Nonlinear Modulational Instability of Dispersive PDE Models
نویسندگان
چکیده
منابع مشابه
Modulational instability in nonlocal nonlinear Kerr media.
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for...
متن کاملModulational instability in periodic quadratic nonlinear materials.
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by a...
متن کاملTransverse nonlinear instability for two-dimensional dispersive models
We present a method to prove nonlinear instability of solitary waves in dispersive models. Two examples are analyzed: we prove the nonlinear long time instability of the KdV solitary wave (with respect to periodic transverse perturbations) under a KP-I flow and the transverse nonlinear instability of solitary waves for the cubic nonlinear Schrödinger equation.
متن کاملInstability of nonlinear dispersive solitary waves
We consider linear instability of solitary waves of several classes of dispersive long wave models. They include generalizations of KDV, BBM, regularized Boussinesq equations, with general dispersive operators and nonlinear terms. We obtain criteria for the existence of exponentially growing solutions to the linearized problem. The novelty is that we dealt with models with nonlocal dispersive t...
متن کاملUniversal Nature of the Nonlinear Stage of Modulational Instability.
We characterize the nonlinear stage of modulational instability (MI) by studying the longtime asymptotics of the focusing nonlinear Schrödinger (NLS) equation on the infinite line with initial conditions tending to constant values at infinity. Asymptotically in time, the spatial domain divides into three regions: a far left and a far right field, in which the solution is approximately equal to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2018
ISSN: 0003-9527,1432-0673
DOI: 10.1007/s00205-018-1303-8